

MBTA Red Line Climate Change Vulnerability Assessment

Summary Presentation

Delivering a better world

Presentation Outline

- Project Objectives
- Project Approach
- Climate Change Vulnerability Assessment Methodology
- Climate Change Vulnerability Assessment Results
- Adaptation Measures
- Next Steps

Project Objectives

- Support MBTA's systemwide climate change vulnerability assessment.
- Assess historical, current, and future vulnerabilities to extreme weather and climate change for the Red Line, including the Mattapan High-Speed Line.
- Develop a replicable process.
- Identify the most vulnerable assets.
- Inform MBTA's capital planning process.

Project Approach

2

Tasks

3

4

5

6

7

Kickoff Meeting

- Information Gathering and Climate Science Review
- Site Visits
 - Climate Change Vulnerability Assessment
 - Identification of Resilience Measures
 - Climate Vulnerability Assessment Report
 - **Summary Presentation**

Project Approach

- Three main data collection tasks informed the vulnerability assessment.

Information Gathering and Climate Science Review

- Red Line Asset Inventory
- Historical Challenges
- Climate Science Review

- Boston
- Braintree
- Cambridge
- Quincy
- Somerville

Alewife Station

- Alewife Yard
- Andrew Station

Site Visits

- Cabot Yard
- Codman Yard
- Columbia Junction

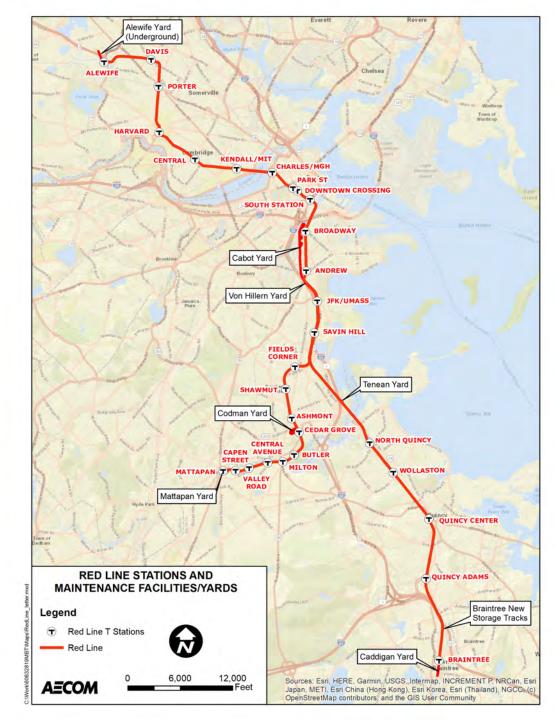
- JFK/UMass Station
- Mattapan Line
- Mattapan Yard
- North Quincy Station
- Shawmut Station
- Tenean Yard

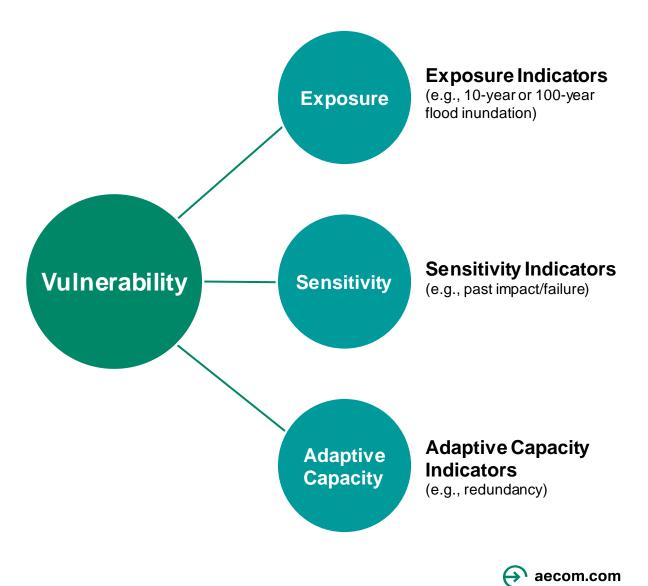
Climate Change Vulnerability Assessment Methodology

- Five climate stressors

Extreme Heat

Precipitation


Sea Level Rise / Storm Surge

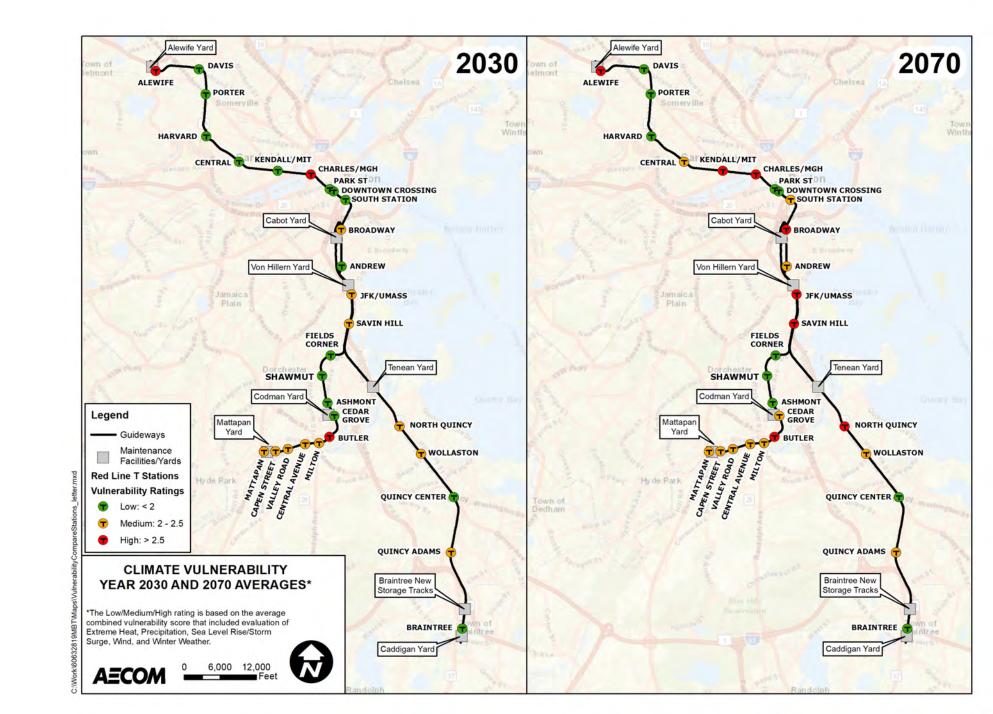

Winter Weather

- Assets included in quantitative assessment
 - Stations (29)
 - Maintenance Facilities/Yards (8)
 - Guideway Segments (68)
- $_{\overline{6}}$ Several assets addressed qualitatively

Climate Change Vulnerability Assessment Methodology

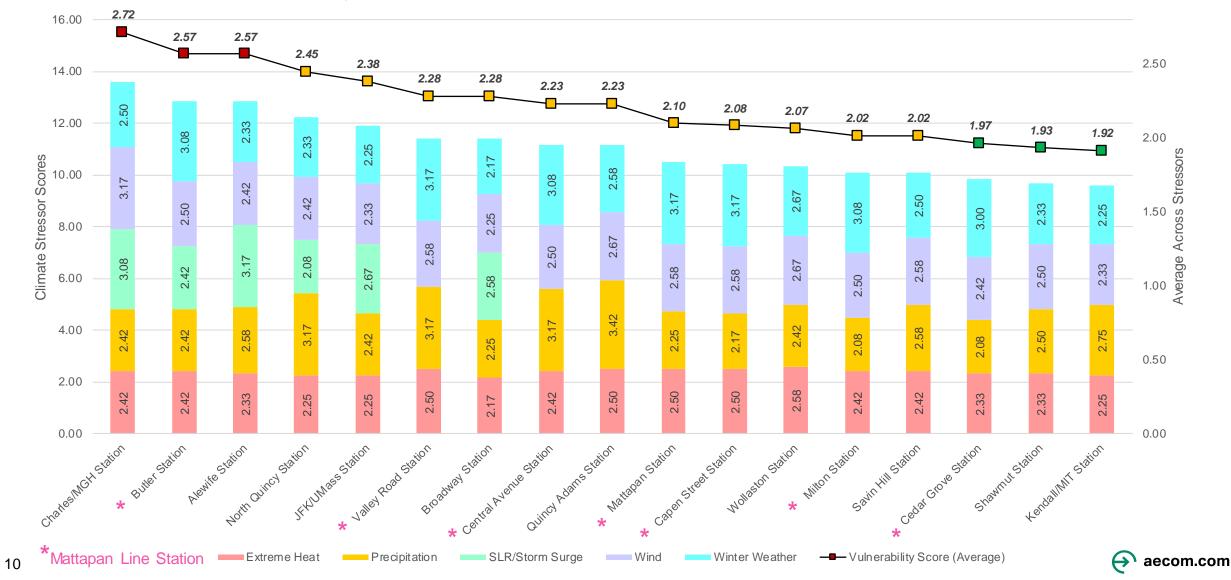
- Used the approach of Federal Highway Administration's (FHWA's) Vulnerability Assessment Scoring Tool (VAST).
- Developed an Excel tool like VAST tailored to MBTA assets and needs.
- Indicators and scoring for Exposure, Sensitivity, and Adaptive Capacity developed and selected through collaboration with:
 - MBTA
 - AECOM subject mater experts
 - Orange Line CCVA consulting team
- See Methodology Appendix slides for
 more details on indicators and scoring.

imate Stressor	Station Vulnerabilities
Extreme Heat	 Human health and safety concerns for passengers and MBTA employees Increased operating stress on mechanical and electrical components and HVAC Possibility for deformation of tracks within stations (heat kinks) Power outages
Precipitation	 Health and safety hazards Loss of access to areas and possible interruption of service Damage to electrical components Chronic exposure to floodwaters can degrade infrastructure and cause structural failures Power outages
SLR/Storm Surge	 Health and safety hazards Salt water that can corrode and cause electrical components as well as other infrastructure to fail Loss of access to areas and possible interruption of service Impact from surge waters that can damage infrastructure and carry debris into the station Power outages
Wind	 Exterior elements that can be damaged or destroyed Debris that can impact sensitive areas of the station Extreme winds that could result in train derailment or other hazardous situations, such as debris on tracks that could interrupt service Power outages
Winter Weather	 Health and safety hazards Loss of access to areas and possible interruption of service Snow and ice accumulation along the guideway within stations Sudden temperature changes that could result in pipe bursts and other equipment damage or failure Power outages


A aecom.com

Primary Concerns for Stations

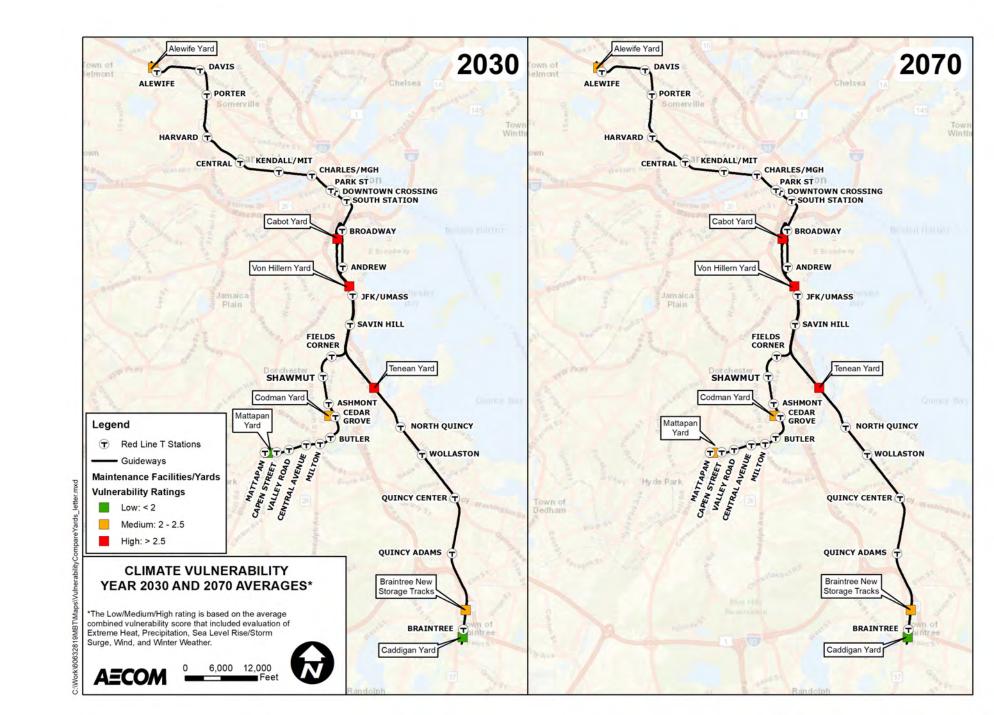
8


Station Vulnerability 2030 & 2070

- Assets are binned by overall vulnerability score.
- Score is calculated by the average across each climate stressor score.
- Scores range from
 1 to 4, with 4
 being higher
 vulnerability.

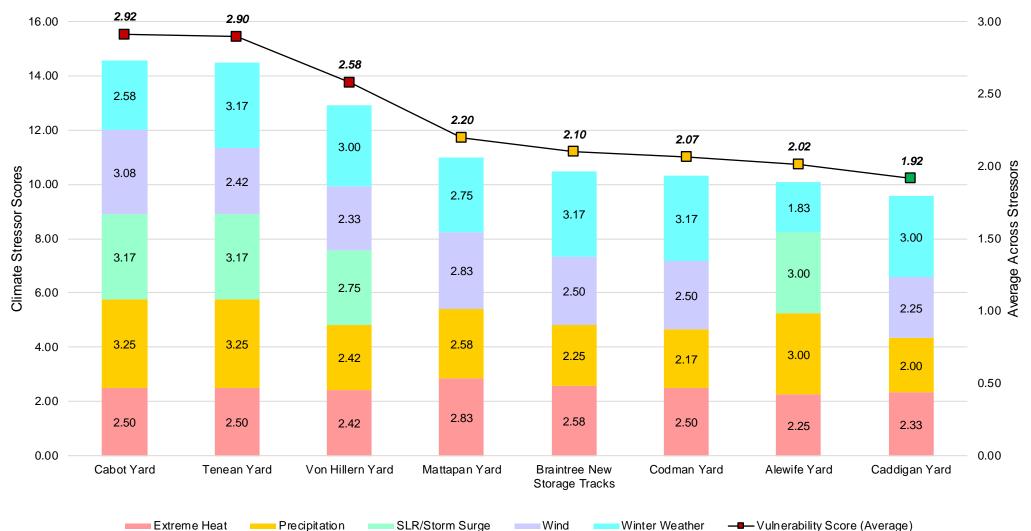
Climate Change Vulnerability Assessment Results

Top Station Vulnerability - 2030


imate Stressor	Maintenance Facilities/Yards Vulnerabilities
Extreme Heat	 Human health and safety concerns for MBTA employees Increased operating stress on mechanical and electrical components and HVAC Possibility for deformation of tracks in maintenance yards and storage areas (heat kinks) Power outages
Precipitation	 Health and safety hazards Loss of access to work areas Damage to electrical components Chronic issues that can degrade infrastructure and cause structural failures Power outages
SLR/Storm Surge	 Health and safety hazards Salt water that can corrode and cause electrical components as well as other infrastructure to fail Loss of access to work areas Surge waters that can damage assets and carry debris into buildings and work areas Power outages
Wind	 Health and safety hazards Exterior structural elements that can be damaged or destroyed Debris that can impact sensitive equipment or work areas Extreme winds that could result in train derailment or other hazardous situations, such as debris on track Power outages
Winter Weather	 Health and safety hazards Loss of access to work areas Snow and ice accumulation on building roofs and along maintenance and storage tracks Sudden temperature changes that could result in pipe bursts and other equipment damage or failure Power outages

A aecom.com

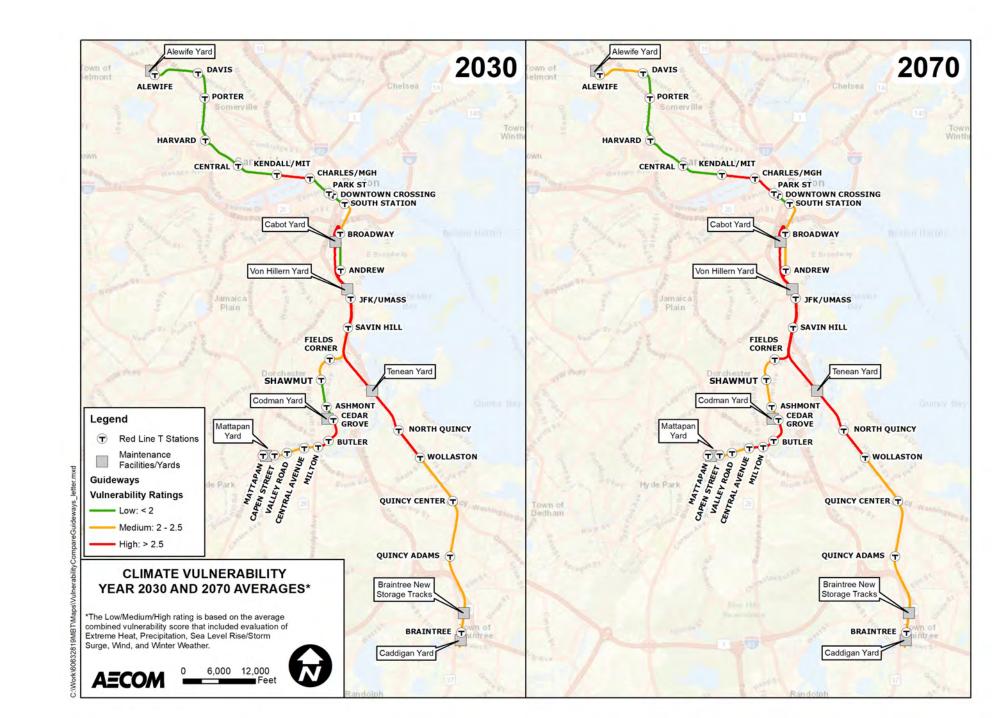
Primary Concerns for Maintenance Facilities/Yards


11

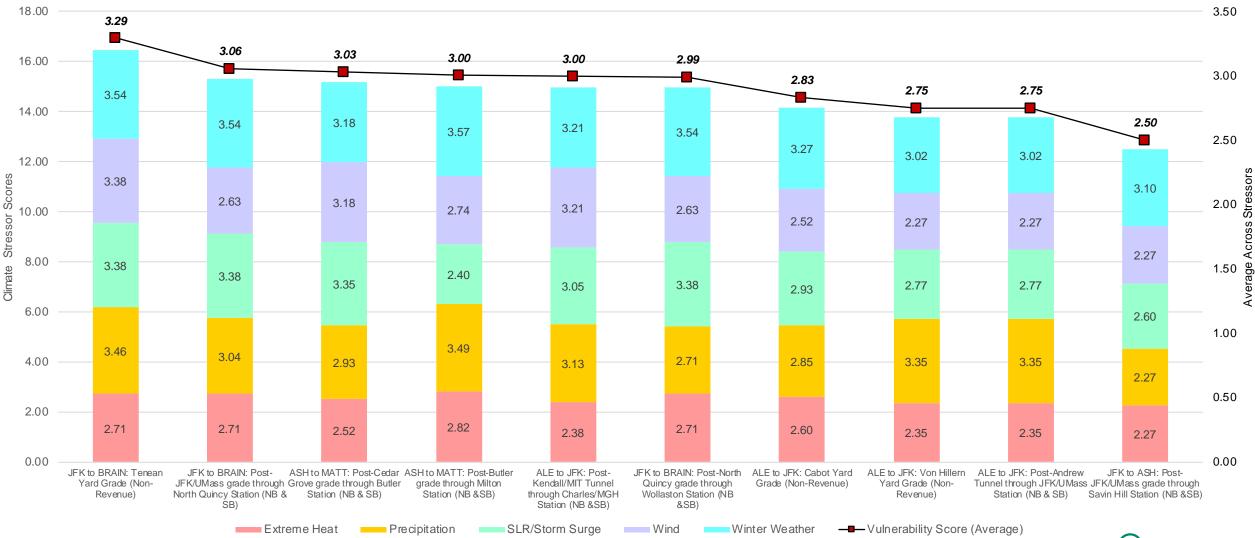
Maintenance Facility/Yard Vulnerability 2030 & 2070

Climate Change Vulnerability Assessment Results

Maintenance Facility/Yard Vulnerability - 2030


— Vulnerability Score (Average)

limate Stressor	Guideway Vulnerabilities
Extreme Heat	 Human health and safety concerns for MBTA employees Increased operating stress on mechanical and electrical components Possibility for deformation of tracks (heat kinks) Power outages
Precipitation	 Health and safety hazards Loss of access to work areas; interruption of service Damage to electrical components Chronic issues that can degrade infrastructure and cause structural failures Power outages
SLR/Storm Surge	 Health and safety hazards Salt water, which can corrode and cause electrical components as well as other infrastructure to fail Loss of access to work areas; interruption of service Impact from surge waters that can damage infrastructure and carry debris across tracks Power outages
Wind	 Health and safety hazards Debris that can impact sensitive equipment or block access to work areas Extreme winds that could result in train derailment or other hazardous situations, such as debris on track Power outages
Winter Weather	 Health and safety hazards Loss of access to work areas Snow and ice accumulation on tracks Possibility for deformation of tracks (rail pull aparts) Power outages


Primary Concerns for the Guideway

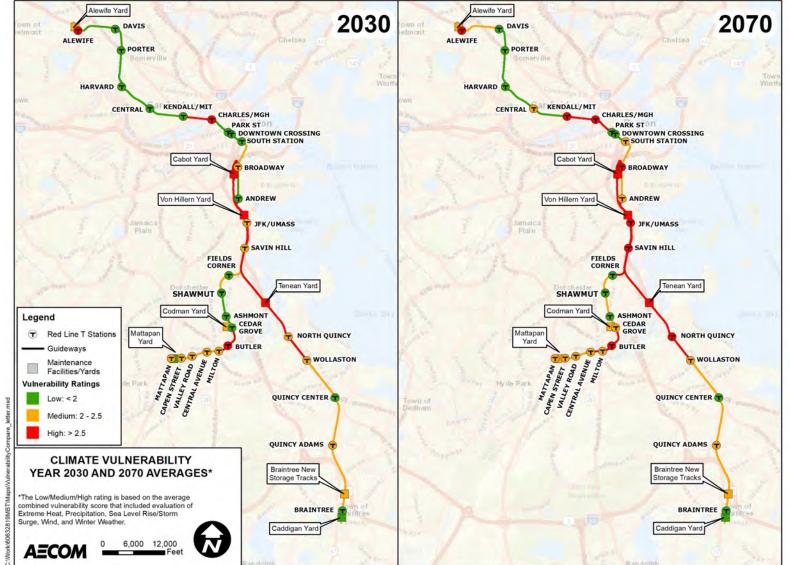
Guideway Vulnerability 2030 & 2070

Climate Change Vulnerability Assessment Results Top Guideway Segment Vulnerability - 2030

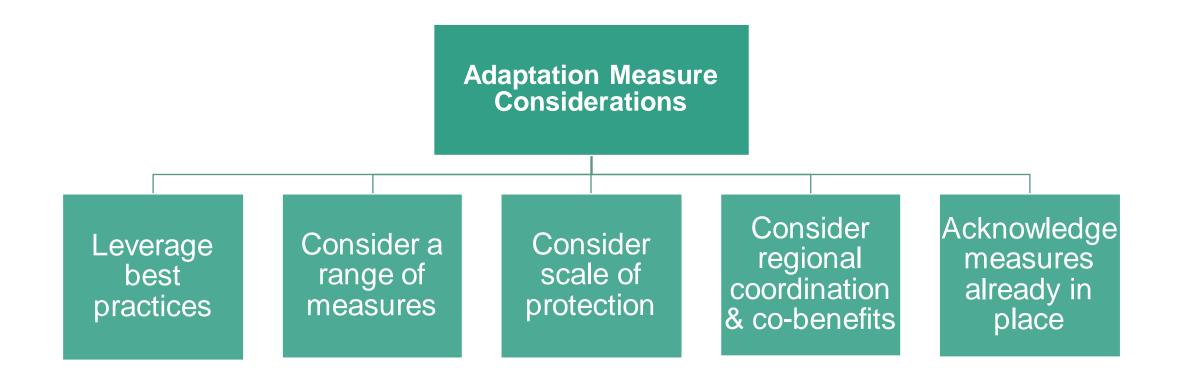
16

Overall Red Line CCVA Key Findings

Stations


- Precipitation has greatest current and future impact to stations.
- SLR/storm surge is only a concern for coastal stations; most stations are inland or on higher ground.
- Wind is only a concern for stations near water or with past impacts.

Maintenance Facilities/Yards


- Flooding (precipitation and SLR/storm surge) could have highest impact due to equipment and access issues.
- Winter weather has highest past impacts on facilities/yards.

Guideways

- Columbia Junction and segments from Cedar Grove Station to Milton Station are at high risk of precipitation and SLR/storm surge flooding.
- Clayton Curve is noted as having extreme
 ¹⁷ heat risk.

- Several guiding principles informed the development of adaptation measures

Categories

Infrastructure

Subcategories

0 **Elevated Structures**

Menu of Options

42 adaptation measures are applicable for MBTA assets

Policy

Cool Pavement/Roof

Stormwater Management

Floodwater Pumping

Floodproofing

Relocate Asset

Mainstream Climate Change into Planning

Increase Redundancy

Operations & Management

Secure Loose Objects

7

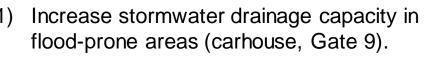
Vegetation Management

Snow/Ice Removal

19

Adaptation Measure Menu

- Excel-based spreadsheet
- Includes:
 - Adaptation subcategory
 - Stressor
 - Measure
 - Description
 - Asset type protected
 - Implementation effort
 - Cost


CLIMATE CHANGE ADAPTATION MEASURES - RED LINE

-	*	-	v	▼		Asset Type Prot	ected 🗸 🗸	Implementation		
Category Subcategory		Hazard	Measure	Description	Station	Maintenance Yard	Guideway	Effort	Cost	
		Flooding -		Raising curbs at ventilation grates and						
Infrastructure	Elevated Barrier	Coastal and Precipitation	Raising Curbs	subway entrances to reduce floodwater influx	X		х	Moderate	\$\$\$	
		Flooding -	Apply Impermeable	Sealing tunnel walls, floors, and ceilings to						
Infrastructure	Wet Floodproofing	Coastal and	Membrane to Tunnel	reduce seepage from groundwater and	x		х	Moderate	\$\$	
		Precipitation	Walls	seasonal infiltration issues						
				Coordinate with municipalities on proper						
	Stormwater	Flooding -	Coordinate with Red Line	reporting, recording, addressing poor						
Policy	Management		Municipalities	drainage under guideways and increasing	x	x	х	Low	\$	
		t Precipitation		stormwater capacity in areas of guideways						
				prone to flooding.						
		Flooding -		lood Barrier at Tunnel						
Infrastructure	Wet Floodproofing	Coastal and	Entrances	entrances prior to large storm event to	x		x	Moderate	\$\$	
		Precipitation		reduce risk of large-scale damage						
		Flooding -		Elevate rail lines and associated						
Infrastructure	Elevated Structures	Coastal and	Elevate Rail and Platforms	infrastructure to maintain rail operations	x		х	High	\$\$\$	
		Precipitation		regardless of flood conditions						
		Flooding -		Elevate critical electrical components (e.g.,						
Infrastructure	Elevated Structures	Coastal and	Elevate Electrical	switches, signals, panel boxes) to prevent	x	x	x	Low	\$\$\$	
		Precipitation		flood damage						
		Flooding -	Install New/Additional	Install pumps to remove water from flood-						
Infrastructure	Water Removal	Coastal and	Pumps*	prone areas during/following storm events	x	x	х	Moderate	\$\$\$	
		Precipitation	Fullips	profile areas during/following storm events						
				Place temporary covers (e.g., plywood) on at-						
Infrastructure	Wet Floodproofing	Flooding -	Temporary Barriers of	grade ventilation areas in anticipation of	x		x	Low	\$\$	
innastructure	weensoaprooning	Precipitation	Ventilation Grates	large events to help prevent flooding of	Â		~	200		
				subway tunnels						

4)

Sample Application at Cabot Yard for Precipitation Flooding

2) Install permeable pavement in parking areas.

Install backflow prevention (e.g., flap gates

at stormwater drainage points connected to

the carhouse and bus operations facility).

3) Add green infrastructure around parking areas.

5) Install pump station to increase stormwater drainage against high tides.

6) Floodproof the Signal Tower, using a flood field at entryways or a waterproof membrane.

Implementation Timing: 2030

Assets Protected: Carhouse, bus operations facility, guideways, parking lots, buildings, substations, electrical/mechanical equipment

Co-Benefits: Increased yard aesthetics from green infrastructure

Potential Partners: Boston Water and Sewer Commission

aecom.com

Next Steps

- Mainstream Climate Resilience

- Integrate asset vulnerability scores into MBTA's asset management system
- Further integrate climate change considerations into capital planning

Build on Red Line CCVA Results

- Revisit limitations identified
- Conduct a detailed assessment of Cabot Yard
- Examine drainage systems and major stormwater interceptors
- Coordinate with the Boston Water and Sewer Commission regarding stormwater management

Implement Adaptation Strategies

- Define criticality to aid in prioritization of climate adaptation efforts
- Use of the menu of adaptation measures by MBTA staff

Thank you.

Delivering a better world

List of Appendices

Appendix A: Detailed Methodology Slides and Cabot Yard Scoring Example Appendix B: Adaptation Measures Cabot Yard Example Appendix C: 2070 Result Charts Appendix D: Guideway Segments

Appendix A: Detailed Methodology Slides and Cabot Yard Scoring Example

Scoring for Exposure Indicators

				Scor	ing							
Climate	Hazard		(1 = least exposed, 4 = most exposed)									
		2030			2070							
Extreme Heat		2	2030									
				3	2070							
	Areas within	1	Not in the 10-year or 100-year storm, or no	1	Not in the 10-year or 100-year storm, or no data							
	stormwater		data available	•	available							
	model	2	100-year storm (any flood inundation depth)		100-year storm (any flood inundation depth)							
Precipitation	domains	3	10-year storm (<u><</u> 1-foot inundation)	3	10-year storm (< 1-foot inundation)							
	uomains	4	10-year storm $(> 1$ -foot inundation)		10-year storm (> 1-foot inundation)							
	For all other	1	Not in a FEMA floodplain	1	Not in a FEMA floodplain							
	locations	4	In a FEMA floodplain	4	In a FEMA floodplain							
•		0	<0.1% ACFEP or not in mapped extent	0	<0.1% ACFEP or not in mapped extent							
		1	 0.1%-0.19% ACFEP 0.2%-0.9% ACFEP 1%-9% ACFEP 10%+ ACFEP 		0.1%-0.19% ACFEP							
SLR/Storm Su	rge	2			0.2%-0.9% ACFEP							
	-	3			1%-9% ACFEP							
		4			10%+ ACFEP							
		1	Belowground/fully enclosed	1	Belowground/fully enclosed							
		2	Dense urban/suburban environment &	2	Dense urban/suburban environment & heavily							
		2	heavily wooded areas (Exp. B)	Ζ	wooded areas (Exp. B)							
Wind			Flat, unobstructed areas or open terrain with		Flat, unobstructed areas or open terrain with							
wind		3	scattered buildings no taller than 30' within		scattered buildings no taller than 30' within							
			1500' of asset (Exp. C)		1500' of asset (Exp. C)							
		4	Within 600' of open waterway that is 1 mile	4	Within 600' of open waterway that is 1 mile							
		4	across (Exp. D)		across (Exp. D)							
Winter Weather		1	Not exposed to snow and ice (fully enclosed	1	Not exposed to snow and ice (fully enclosed or							
		I	or underground)	I	underground)							
		2	Partially exposed to outdoors	2	Partially exposed to outdoors							
		4	Fully outdoors	4	Fully outdoors							

' = feet

< = less than

Exp. = exposure

FEMA = Federal Emergency Management Agency

ACFEP = annual coastal flood

exceedance probability

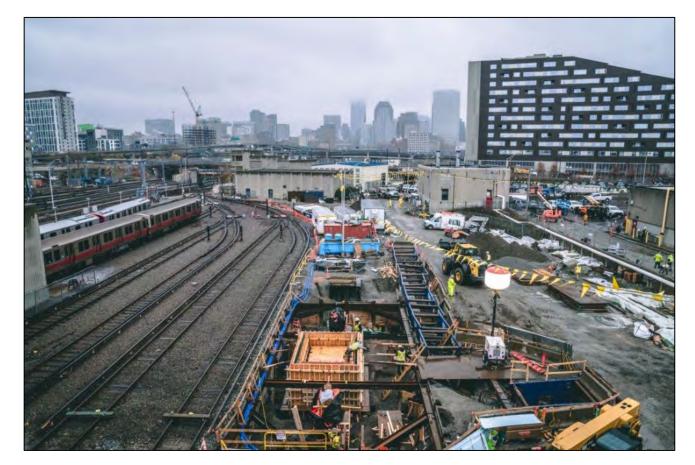
Climate Change Vulnerability Assessment Methodology Example Application – Cabot Yard

Sensitivity

Extreme Heat

Exposure

2030 (2)


Nind

 Within 600 feet of open waterway that is 1 mile across (Exp. D); close to Fort Point Channel/open connection to Boston inner harbor (4)

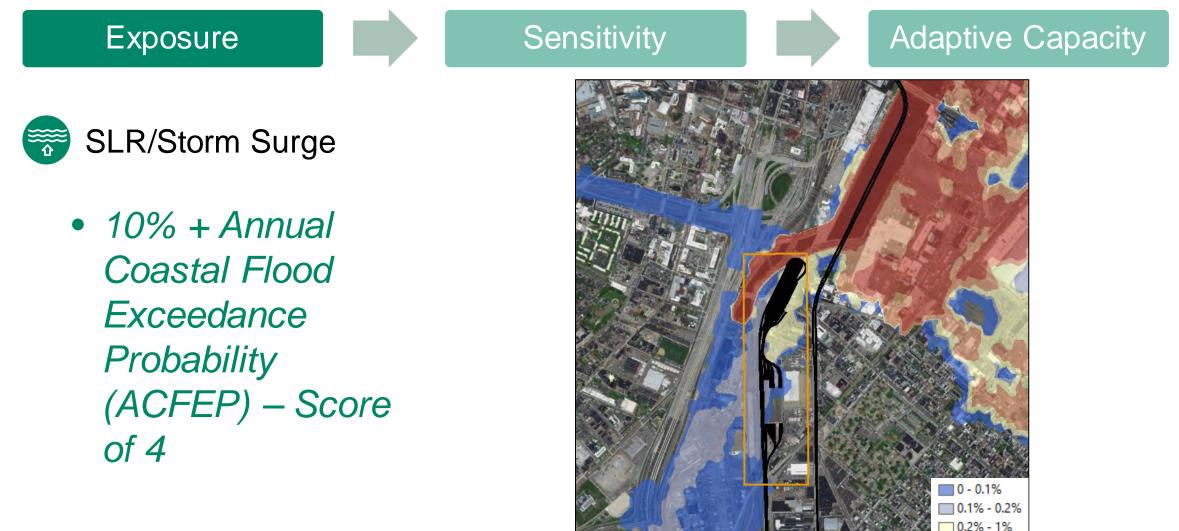
Winter Weather

• Partially exposed to outdoors (2)

Adaptive Capacity

Climate Change Vulnerability Assessment Methodology *Example Application – Cabot Yard*

Precipitation


Exposure

 10-year (>1-foot inundation) -Score of 4

Climate Change Vulnerability Assessment Methodology *Example Application – Cabot Yard*

1% - 10%

Scoring for Sensitivity Indicators

Indicators	Scores (1 = least sensitive, 4 = most sensitive)								
	4	3	2	1					
Asset complexity (% of possible critical systems present at asset)	76–100%	51–75%	26–50%	0–25%					
Critical systems sensitivity (% of possible sensitivity score for critical systems present)	76–100%	51–75%	26–50%	0–25%					
Past impact/failure	Yes – Major		Yes – Minor	No					
Asset Location (SLR/Storm Surge and Precipitation Score Only)	Belowground	At-grade (open/partially enclosed)	At-grade (fully enclosed)	Aboveground					
Asset Location (Wind, Heat, and Winter Weather Score Only)	Not enclosed	Partially enclosed	Fully enclosed	Belowground					

Sensitivity Score Per Climate Stressor = (Asset Complexity Score * 25%) + (Critical Systems Sensitivity Score * 25%) + (Past Impact/Failure Score * 25%) + (Asset Location * 25%)

Climate Change Vulnerability Assessment Methodology Example Application – Cabot Yard

Exp	05	sure					Sensitivity				A	daptiv	/e	Cap	aci	ty	
Does System exist within Cabot?		Heat	Precip	SLR/SS	Wind	Winter Weather											
Carhouse	Y	2	4	4	3	2	Sensitivity Indicators	Heat		Precip		SLR/SS		Wind		Winter Weather	
Signal Tow er	Y	2	4	4	2	1	Asset complexity (% of possible critical systems present at asset)	100%	4	100%	4	100%	4	100%	4	100%	4
Tracks & Roadbed	Y	2	4	4	2	2	Critical systems sensitivity (% of possible sensitivity score for critical systems	63%	3	100%	4	100%	4	56%	3	44%	2
Sw itches &Sw itch Heaters	Y	4	4	4	2	2	present) Past impact/failure	Yes-Minor	2	Yes-Minor	2	No	1	No	1	Yes-Major	4
							Asset Location (SLR & Precipitation)	N/A for this hazard		At-grade (open/ partially enclosed)	3	At-grade (open/ partially enclosed)	3	N/A for this hazard	5	N/A for this hazard	
							Asset Location (Wind, Heat & Winter Weather)	Partially enclosed	3	N/A for this hazard		N/A for this hazard		Partially enclosed	3	Partially enclosed	3
31							VAST Score	3		3.25		3		2.75	1	3.25	

Climate Change Vulnerability Assessment Methodology *Example Application – Cabot Yard*

Exposure	Sensitivity Adaptive Capa
Climate Stressor	Past Impact Failure Details (Source)
Extreme Heat	 Small fires can happen on the rail ties in the yard when sparked during hot/dry periods (Site Visit).
Precipitation	 Mothers Day Flood 2006: Service for Lead Track 2 at Cabot Yard was lost, and some track circuits were dropped (<i>MBTA Records</i>). Flooding at the Cabot Southbound lead track underpass to the Braintree line. Flooding in parking lot located southeast of carhouse, and water can pond at the southern edge of the carhouse; same situation at Gate 9. Poor drainage (<i>Site Visit</i>).
Winter Weather	 Blizzard 2013: A partial out and back at Cabot Yard (<i>MBTA Records</i>). Winter 2015: Impacted (<i>Survey</i>). Snow storage can be difficult because of limited space in the parking lot; derailment occurred recently due to a frozen switch (<i>Site Visit</i>).

Scoring for Adaptive Capacity Indicators

Indicators	Scores (1 = high adaptive capacity, 4 = low adaptive capacity)								
	4	3	2	1					
Distance from Central Point of MBTA System	>5 miles from principal maintenance facility (Cabot Yard)	3-5 miles from principal maintenance facility (Cabot Yard)	1-3 miles from principal maintenance facility (Cabot Yard)	<1 mile from principal maintenance facility (Cabot Yard)					
Redundancy (Service Option, Interchange Utility) Guideway not scored for this indicator	No ability to transfer (bus service line, commuter rail, other yard, other lines)			Ability to transfer (bus service line, commuter rail, other yard, other lines)					
Presence of Backup Generator(s) for Critical Infrastructure	Does not have a backup generator on- site	Has ability to connect to mobile generator		Has a backup generator on-site					
Flood Protection Systems	No flood protection / limited to standard operating procedures (sandbags only)	Deployable system (designed to appropriate design storm)		Passive system (designed to appropriate design storm)					

Station and Maintenance Adaptive Capacity Score across All Climate Stressors = (Distance from Central Point of MBTA System* 25%) + (Redundancy Score * 25%) + (Backup Generator Score * 25%) + (Flood Protection Score * 25%)

33

Climate Change Vulnerability Assessment Methodology *Example Application – Cabot Yard*

- Distance from Central Point of MBTA System
 - <1 mile from Cabot Yard (1)
- Redundancy
 - No ability to transfer (1)
- Backup Generator(s) for Critical Infrastructure
 - Backup generator on-site (1)
- Flood Protection Systems
 - No flood protection (4)

Overall Vulnerability Score

- Vulnerability scores per climate stressor were calculated for both 2030 and 2070, using the outputs for exposure, sensitivity, and adaptive capacity.
- Each score was multiplied by equal weighting (33%) and then added together.

Vulnerability Score Per Climate Stressor = (Exposure Score * 33%) + (Sensitivity Score * 33%) + (Adaptive Capacity Score * 33%)

- SLR/Storm Surge and Wind vulnerability scores are zeroed out if not exposed.
- An overall vulnerability score for 2030 and 2070 was developed by averaging the scores across the five climate stressors.

Climate Change Vulnerability Assessment Methodology *Example Application – Cabot Yard*

Overall Vulnerability Assessment Score Calculations (2030 Example)

Exposure Sensitivity Adaptive Capacity

- Extreme Heat:
- Precipitation:
- SLR/Storm Surge:
- Wind:
- Winter Weather:

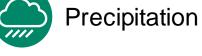
 $\begin{array}{ll} (2^*33\%) + (3^*33\%) + (2.5^*33\%) &= 2.50 \\ (4^*33\%) + (3.25^*33\%) + (2.5^*33\%) &= 3.25 \\ (4^*33\%) + (3^*33\%) + (2.5^*33\%) &= 3.17 \\ (4^*33\%) + (2.75^*33\%) + (2.5^*33\%) &= 3.08 \\ (2^*33\%) + (3.25^*33\%) + (2.5^*33\%) &= 2.58 \\ \end{array}$

Average across stressors = **2.92** •

Appendix B: Adaptation Measures Cabot Yard Example

Delivering a better world

Applying Adaptation Measures: Cabot Yard


Highly vulnerable to:

Extreme Heat

Winter Weather

SLR/Storm Surge

Extreme Heat

1) Install rail expansion joints in areas of Cabot Yard that are prone to buckling during extreme heat conditions.

 Add cool or green roofs to on-site utility buildings to lower temperatures for housed electronics

Implementation Timing: 2030

Assets Protected: Maintenance facility/yard guideways, contents of utility buildings

Co-Benefits: Increased stormwater capture/treatment from green roofs

Potential Partners: Not applicable

Precipitation Flooding

- Floodwater Pumping

-) Increase stormwater drainage capacity in flood-prone areas (carhouse, Gate 9).
- 2) Install permeable pavement in parking areas.
- 3) Add green infrastructure around parking areas.
- 4) Install backflow prevention (e.g., flap gates at stormwater drainage points connected to the carhouse and bus operations facility).
- 5) Install pump station to increase stormwater drainage against high tides.
- 6) Floodproof the Signal Tower, using a flood field at entryways or a waterproof membrane.

Implementation Timing: 2030

Assets Protected: Carhouse, bus operations facility, guideways, parking lots, buildings, substations, electrical/mechanical equipment

Co-Benefits: Increased yard aesthetics from green infrastructure

Potential Partners: Not applicable

SLR/Storm Surge Flooding

 Coordinate with the City of Boston to address low-lying shoreline elevations along Bass River and the Fort Point Waterfront.

2) Elevate the substation currently under construction.

Implementation Timing: 2030

Assets Protected: Substation, carhouse, guideways, parking lots, buildings, electrical/mechanical equipment, stored train cars

Co-Benefits: Regional flood protection for adjacent properties (Fort Point, South Boston, D Street/West Broadway)

Potential Partners: City of Boston

Wind

1) Develop protocols to secure loose objects in the yard prior to coming high-wind events.

Implementation Timing: 2030

Assets Protected: Carhouse, buildings, electrical/mechanical equipment, stored train cars

Co-Benefits: Not applicable

Potential Partners: Not applicable

Winter Weather

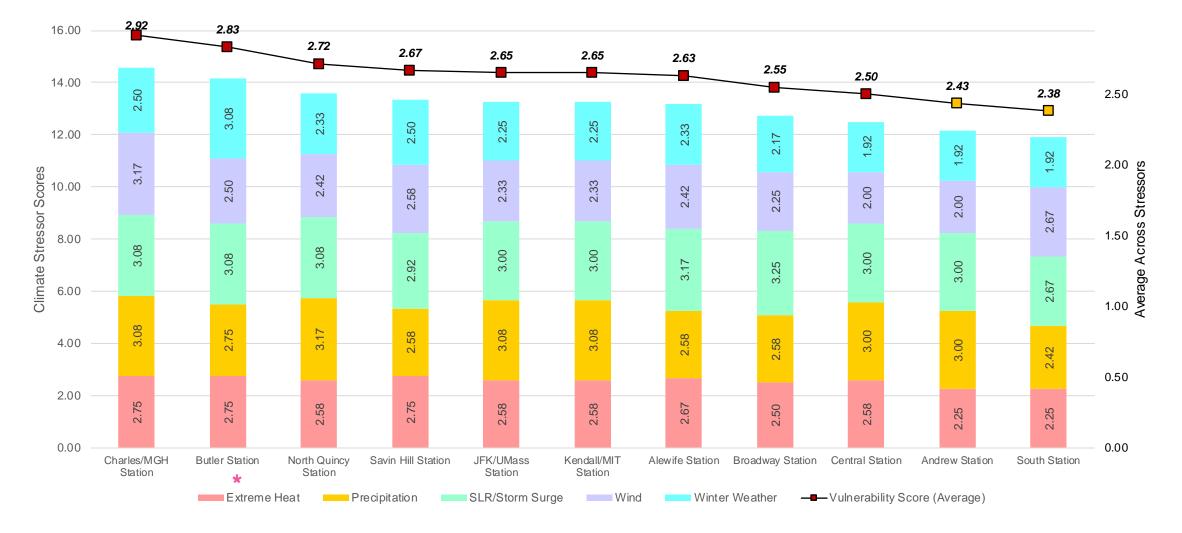
- 1) Continue operational snow and ice removal procedures (using snow throwers, installing scraper shoes, "rocking" trains in the yard).
- 2) Coordinate with the City of Boston to prioritize snow removal to the Cabot Yard site.
- 3) Store trains inside the carhouse overnight prior to winter storms.

Implementation Timing: 2030

Assets Protected: Stored train cars, parking lots

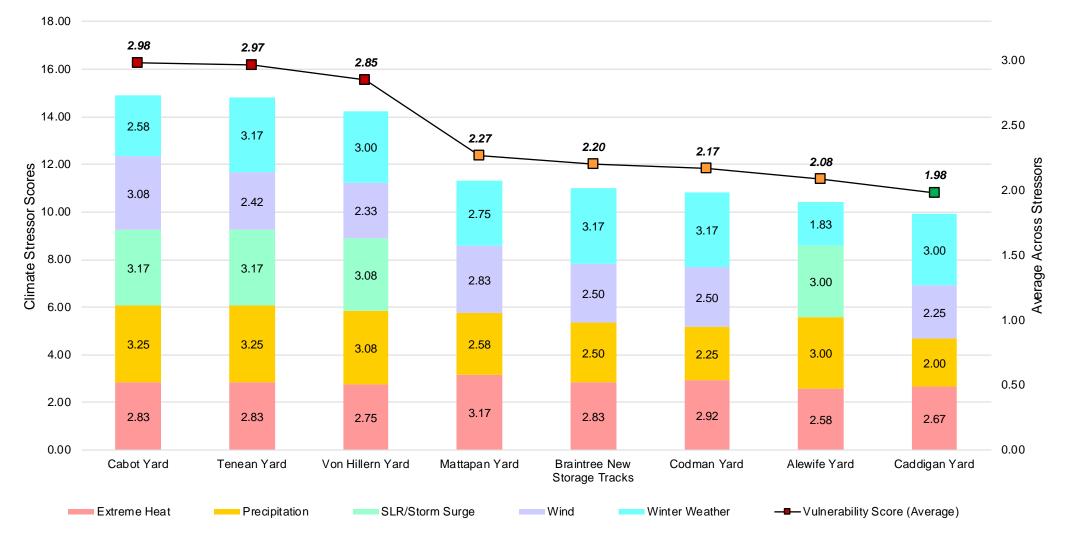
Co-Benefits: Not applicable

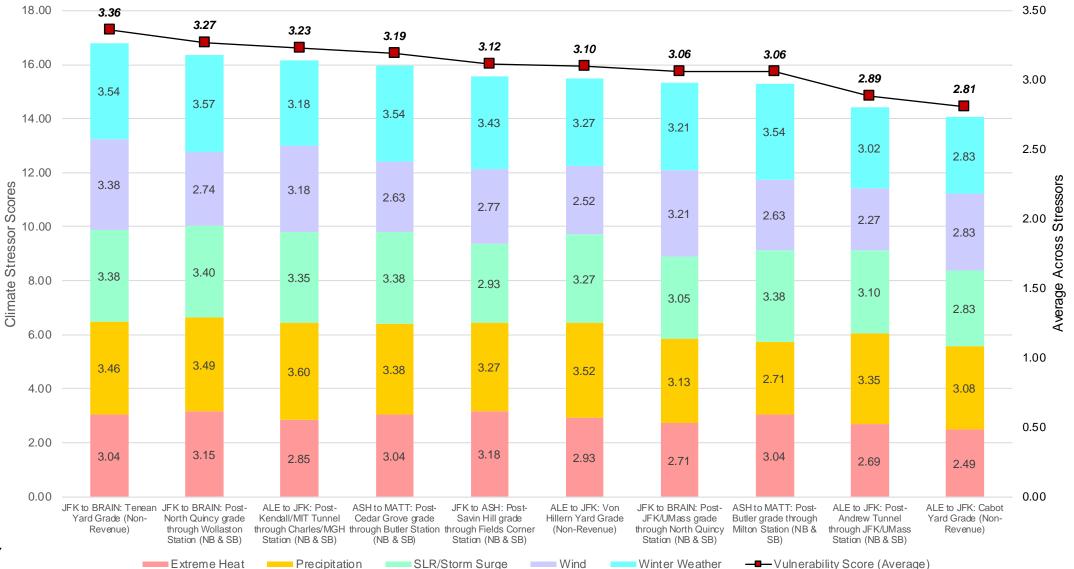
Potential Partners: City of Boston



Appendix C: 2070 Result Charts

Delivering a better world


Climate Change Vulnerability Assessment Results *Top Station Vulnerability - 2070*

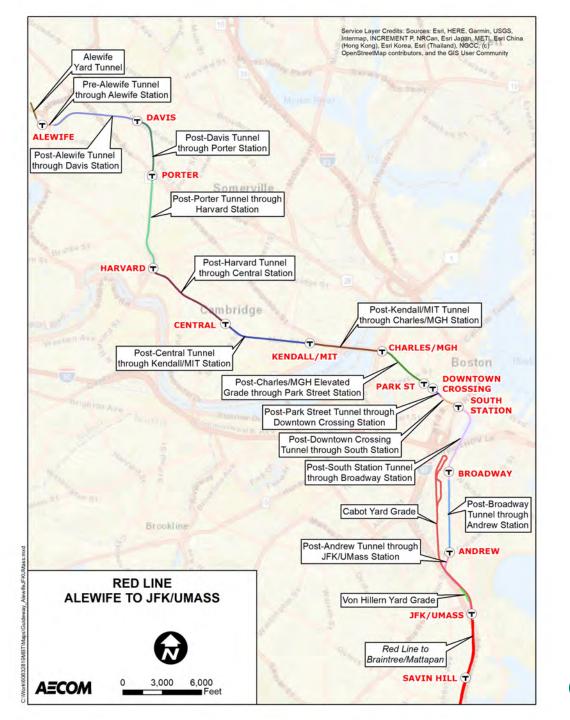


Climate Change Vulnerability Assessment Results

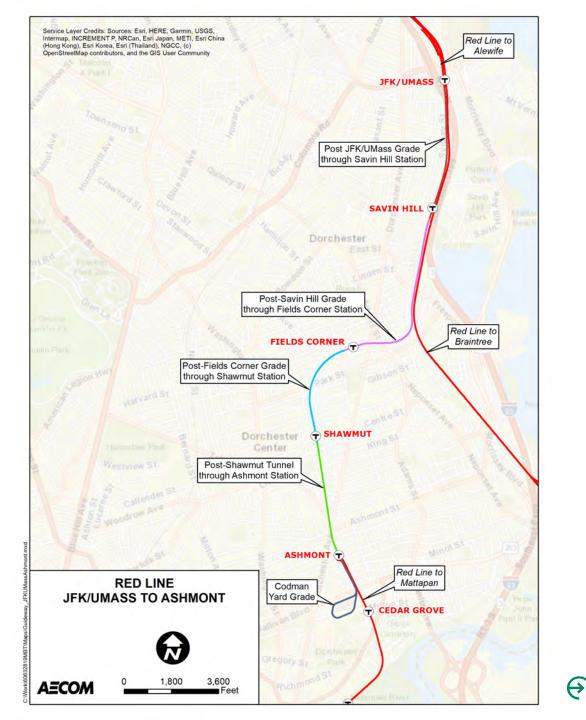
Top Maintenance Facility/Yard Vulnerability - 2070

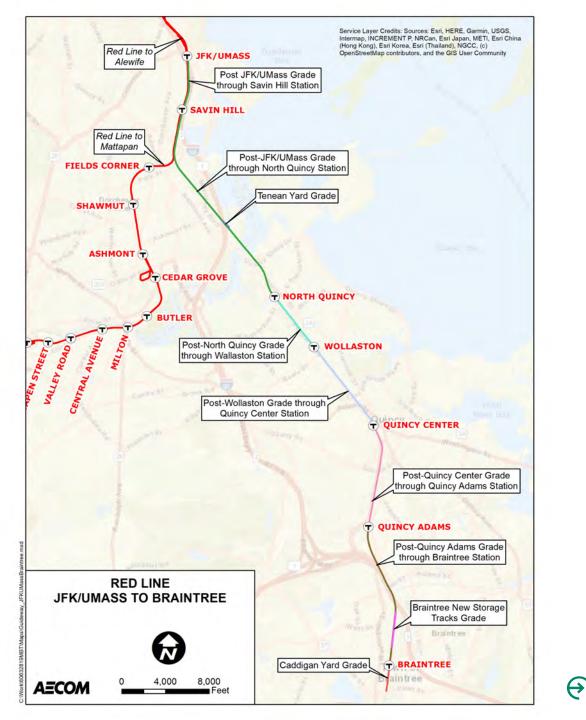
Climate Change Vulnerability Assessment Results *Top Guideway Vulnerability - 2070*

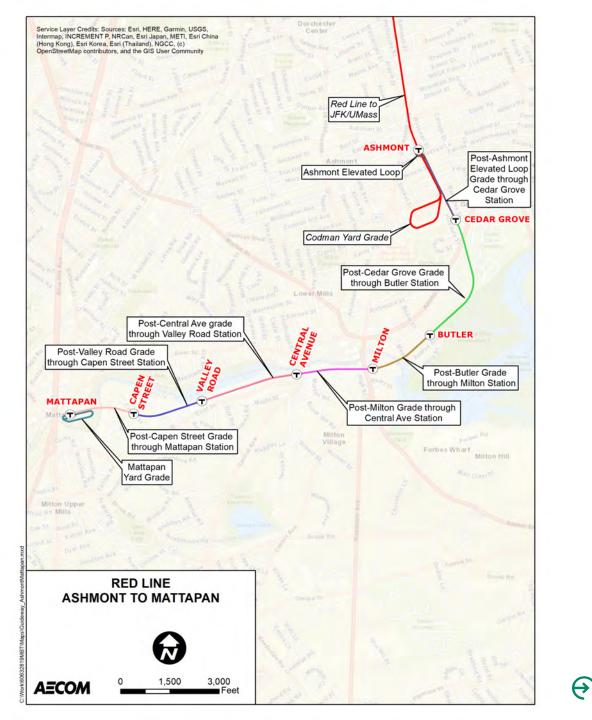
47



Appendix D: Guideway Segments


Delivering a better world


Labeled Guideway Segments for Alewife to JFK/UMass


Labeled Guideway Segments for JFK/UMass to Ashmont

Labeled Guideway Segments for JFK/UMass to Braintree

Labeled Guideway Segments for Ashmont to Mattapan

